Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Six-channel Image Representation for Cross-domain Object Detection (2101.00561v2)

Published 3 Jan 2021 in cs.CV

Abstract: Most deep learning models are data-driven and the excellent performance is highly dependent on the abundant and diverse datasets. However, it is very hard to obtain and label the datasets of some specific scenes or applications. If we train the detector using the data from one domain, it cannot perform well on the data from another domain due to domain shift, which is one of the big challenges of most object detection models. To address this issue, some image-to-image translation techniques have been employed to generate some fake data of some specific scenes to train the models. With the advent of Generative Adversarial Networks (GANs), we could realize unsupervised image-to-image translation in both directions from a source to a target domain and from the target to the source domain. In this study, we report a new approach to making use of the generated images. We propose to concatenate the original 3-channel images and their corresponding GAN-generated fake images to form 6-channel representations of the dataset, hoping to address the domain shift problem while exploiting the success of available detection models. The idea of augmented data representation may inspire further study on object detection and other applications.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube