Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 46 tok/s Pro
GPT-5 High 43 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 40 tok/s Pro
2000 character limit reached

A Provably Efficient Algorithm for Linear Markov Decision Process with Low Switching Cost (2101.00494v1)

Published 2 Jan 2021 in cs.LG, cs.AI, and stat.ML

Abstract: Many real-world applications, such as those in medical domains, recommendation systems, etc, can be formulated as large state space reinforcement learning problems with only a small budget of the number of policy changes, i.e., low switching cost. This paper focuses on the linear Markov Decision Process (MDP) recently studied in [Yang et al 2019, Jin et al 2020] where the linear function approximation is used for generalization on the large state space. We present the first algorithm for linear MDP with a low switching cost. Our algorithm achieves an $\widetilde{O}\left(\sqrt{d3H4K}\right)$ regret bound with a near-optimal $O\left(d H\log K\right)$ global switching cost where $d$ is the feature dimension, $H$ is the planning horizon and $K$ is the number of episodes the agent plays. Our regret bound matches the best existing polynomial algorithm by [Jin et al 2020] and our switching cost is exponentially smaller than theirs. When specialized to tabular MDP, our switching cost bound improves those in [Bai et al 2019, Zhang et al 20020]. We complement our positive result with an $\Omega\left(dH/\log d\right)$ global switching cost lower bound for any no-regret algorithm.

Citations (44)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.