Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Interval Type-2 Enhanced Possibilistic Fuzzy C-Means Clustering for Gene Expression Data Analysis (2101.00304v2)

Published 1 Jan 2021 in q-bio.GN, cs.CV, and cs.LG

Abstract: Both FCM and PCM clustering methods have been widely applied to pattern recognition and data clustering. Nevertheless, FCM is sensitive to noise and PCM occasionally generates coincident clusters. PFCM is an extension of the PCM model by combining FCM and PCM, but this method still suffers from the weaknesses of PCM and FCM. In the current paper, the weaknesses of the PFCM algorithm are corrected and the enhanced possibilistic fuzzy c-means (EPFCM) clustering algorithm is presented. EPFCM can still be sensitive to noise. Therefore, we propose an interval type-2 enhanced possibilistic fuzzy c-means (IT2EPFCM) clustering method by utilizing two fuzzifiers $(m_1, m_2)$ for fuzzy memberships and two fuzzifiers $({\theta}_1, {\theta}_2)$ for possibilistic typicalities. Our computational results show the superiority of the proposed approaches compared with several state-of-the-art techniques in the literature. Finally, the proposed methods are implemented for analyzing microarray gene expression data.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.