Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Locally conservative immersed finite element method for elliptic interface problems (2101.00241v1)

Published 1 Jan 2021 in math.NA and cs.NA

Abstract: In this paper, we introduce the locally conservative enriched immersed finite element method (EIFEM) to tackle the elliptic problem with interface. The immersed finite element is useful for handling interface with mesh unfit with the interface. However, all the currently available method under IFEM framework may not be designed to consider the flux conservation. We provide an efficient and effective remedy for this issue by introducing a local piecewise constant enrichment, which provides the locally conservative flux. We have also constructed and analyzed an auxiliary space preconditioner for the resulting system based on the application of algebraic multigrid method. The new observation in this work is that by imposing strong Dirichlet boundary condition for the standard IFEM part of EIFEM, we are able to remove the zero eigen-mode of the EIFEM system while still imposing the Dirichlet boundary condition weakly assigned to the piecewise constant enrichment part of EIFEM. A couple of issues relevant to the piecewise constant enrichment given for the mesh unfit to the interface has been discussed and clarified as well. Numerical tests are provided to confirm the theoretical development.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.