Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The Query Complexity of Local Search and Brouwer in Rounds (2101.00061v2)

Published 31 Dec 2020 in cs.DS and cs.CC

Abstract: We consider the query complexity of finding a local minimum of a function defined on a graph, where at most $k$ rounds of interaction with the oracle are allowed. Rounds model parallel settings, where each query takes resources to complete and is executed on a separate processor. Thus the query complexity in $k$ rounds informs how many processors are needed to achieve a parallel time of $k$. We focus on the d-dimensional grid $[n]d$, where the dimension $d$ is a constant, and consider two regimes for the number of rounds: constant and polynomial in n. We give algorithms and lower bounds that characterize the trade-off between the number of rounds of adaptivity and the query complexity of local search. When the number of rounds $k$ is constant, we show that the query complexity of local search in $k$ rounds is $\Theta\bigl(n{\frac{d{k+1} - dk}{dk - 1}}\bigl)$, for both deterministic and randomized algorithms. When the number of rounds is polynomial, i.e. $k = n{\alpha}$ for $0 < \alpha < d/2$, the randomized query complexity is $\Theta\left(n{d-1 - \frac{d-2}{d}\alpha}\right)$ for all $d \geq 5$. For $d=3$ and $d=4$, we show the same upper bound expression holds and give almost matching lower bounds. The local search analysis also enables us to characterize the query complexity of computing a Brouwer fixed point in rounds. Our proof technique for lower bounding the query complexity in rounds may be of independent interest as an alternative to the classical relational adversary method of Aaronson from the fully adaptive setting.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.