Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Poisoning Attacks on Cyber Attack Detectors for Industrial Control Systems (2012.15740v1)

Published 23 Dec 2020 in cs.CR and cs.LG

Abstract: Recently, neural network (NN)-based methods, including autoencoders, have been proposed for the detection of cyber attacks targeting industrial control systems (ICSs). Such detectors are often retrained, using data collected during system operation, to cope with the natural evolution (i.e., concept drift) of the monitored signals. However, by exploiting this mechanism, an attacker can fake the signals provided by corrupted sensors at training time and poison the learning process of the detector such that cyber attacks go undetected at test time. With this research, we are the first to demonstrate such poisoning attacks on ICS cyber attack online NN detectors. We propose two distinct attack algorithms, namely, interpolation- and back-gradient based poisoning, and demonstrate their effectiveness on both synthetic and real-world ICS data. We also discuss and analyze some potential mitigation strategies.

Citations (27)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.