Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Better Robustness by More Coverage: Adversarial Training with Mixup Augmentation for Robust Fine-tuning (2012.15699v3)

Published 31 Dec 2020 in cs.CL

Abstract: Pretrained LLMs (PLMs) perform poorly under adversarial attacks. To improve the adversarial robustness, adversarial data augmentation (ADA) has been widely adopted to cover more search space of adversarial attacks by adding textual adversarial examples during training. However, the number of adversarial examples for text augmentation is still extremely insufficient due to the exponentially large attack search space. In this work, we propose a simple and effective method to cover a much larger proportion of the attack search space, called Adversarial and Mixup Data Augmentation (AMDA). Specifically, AMDA linearly interpolates the representations of pairs of training samples to form new virtual samples, which are more abundant and diverse than the discrete text adversarial examples in conventional ADA. Moreover, to fairly evaluate the robustness of different models, we adopt a challenging evaluation setup, which generates a new set of adversarial examples targeting each model. In text classification experiments of BERT and RoBERTa, AMDA achieves significant robustness gains under two strong adversarial attacks and alleviates the performance degradation of ADA on the clean data. Our code is available at: https://github.com/thunlp/MixADA .

Citations (64)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube