Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Leveraging Audio Gestalt to Predict Media Memorability (2012.15635v1)

Published 31 Dec 2020 in cs.MM, cs.AI, and cs.CV

Abstract: Memorability determines what evanesces into emptiness, and what worms its way into the deepest furrows of our minds. It is the key to curating more meaningful media content as we wade through daily digital torrents. The Predicting Media Memorability task in MediaEval 2020 aims to address the question of media memorability by setting the task of automatically predicting video memorability. Our approach is a multimodal deep learning-based late fusion that combines visual, semantic, and auditory features. We used audio gestalt to estimate the influence of the audio modality on overall video memorability, and accordingly inform which combination of features would best predict a given video's memorability scores.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.