Maximum-Likelihood Quantum State Tomography by Soft-Bayes (2012.15498v3)
Abstract: Quantum state tomography (QST), the task of estimating an unknown quantum state given measurement outcomes, is essential to building reliable quantum computing devices. Whereas computing the maximum-likelihood (ML) estimate corresponds to solving a finite-sum convex optimization problem, the objective function is not smooth nor Lipschitz, so most existing convex optimization methods lack sample complexity guarantees; moreover, both the sample size and dimension grow exponentially with the number of qubits in a QST experiment, so a desired algorithm should be highly scalable with respect to the dimension and sample size, just like stochastic gradient descent. In this paper, we propose a stochastic first-order algorithm that computes an $\varepsilon$-approximate ML estimate in $O( ( D \log D ) / \varepsilon ^ 2 )$ iterations with $O( D3 )$ per-iteration time complexity, where $D$ denotes the dimension of the unknown quantum state and $\varepsilon$ denotes the optimization error. Our algorithm is an extension of Soft-Bayes to the quantum setup.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.