Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Per-Instance Algorithm Selection for Recommender Systems via Instance Clustering (2012.15151v1)

Published 30 Dec 2020 in cs.IR

Abstract: Recommendation algorithms perform differently if the users, recommendation contexts, applications, and user interfaces vary even slightly. It is similarly observed in other fields, such as combinatorial problem solving, that algorithms perform differently for each instance presented. In those fields, meta-learning is successfully used to predict an optimal algorithm for each instance, to improve overall system performance. Per-instance algorithm selection has thus far been unsuccessful for recommender systems. In this paper we propose a per-instance meta-learner that clusters data instances and predicts the best algorithm for unseen instances according to cluster membership. We test our approach using 10 collaborative- and 4 content-based filtering algorithms, for varying clustering parameters, and find a significant improvement over the best performing base algorithm at alpha=0.053 (MAE: 0.7107 vs LightGBM 0.7214; t-test). We also explore the performances of our base algorithms on a ratings dataset and empirically show that the error of a perfect algorithm selector monotonically decreases for larger pools of algorithm. To the best of our knowledge, this is the first effective meta-learning technique for per-instance algorithm selection in recommender systems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Andrew Collins (17 papers)
  2. Laura Tierney (1 paper)
  3. Joeran Beel (42 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.