Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

New Partitioning Techniques and Faster Algorithms for Approximate Interval Scheduling (2012.15002v5)

Published 30 Dec 2020 in cs.DS

Abstract: Interval scheduling is a basic problem in the theory of algorithms and a classical task in combinatorial optimization. We develop a set of techniques for partitioning and grouping jobs based on their starting and ending times, that enable us to view an instance of interval scheduling on many jobs as a union of multiple interval scheduling instances, each containing only a few jobs. Instantiating these techniques in dynamic and local settings of computation leads to several new results. For $(1+\varepsilon)$-approximation of job scheduling of $n$ jobs on a single machine, we develop a fully dynamic algorithm with $O(\frac{\log{n}}{\varepsilon})$ update and $O(\log{n})$ query worst-case time. Further, we design a local computation algorithm that uses only $O(\frac{\log{N}}{\varepsilon})$ queries when all jobs are length at least $1$ and have starting/ending times within $[0,N]$. Our techniques are also applicable in a setting where jobs have rewards/weights. For this case we design a fully dynamic deterministic algorithm whose worst-case update and query time are $\operatorname{poly}(\log n,\frac{1}{\varepsilon})$. Equivalently, this is the first algorithm that maintains a $(1+\varepsilon)$-approximation of the maximum independent set of a collection of weighted intervals in $\operatorname{poly}(\log n,\frac{1}{\varepsilon})$ time updates/queries. This is an exponential improvement in $1/\varepsilon$ over the running time of a randomized algorithm of Henzinger, Neumann, and Wiese ~[SoCG, 2020], while also removing all dependence on the values of the jobs' starting/ending times and rewards, as well as removing the need for any randomness. We also extend our approaches for interval scheduling on a single machine to examine the setting with $M$ machines.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.