Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Privacy-Preserving Methods for Vertically Partitioned Incomplete Data (2012.14954v1)

Published 29 Dec 2020 in cs.CR and stat.ME

Abstract: Distributed health data networks that use information from multiple sources have drawn substantial interest in recent years. However, missing data are prevalent in such networks and present significant analytical challenges. The current state-of-the-art methods for handling missing data require pooling data into a central repository before analysis, which may not be possible in a distributed health data network. In this paper, we propose a privacy-preserving distributed analysis framework for handling missing data when data are vertically partitioned. In this framework, each institution with a particular data source utilizes the local private data to calculate necessary intermediate aggregated statistics, which are then shared to build a global model for handling missing data. To evaluate our proposed methods, we conduct simulation studies that clearly demonstrate that the proposed privacy-preserving methods perform as well as the methods using the pooled data and outperform several na\"ive methods. We further illustrate the proposed methods through the analysis of a real dataset. The proposed framework for handling vertically partitioned incomplete data is substantially more privacy-preserving than methods that require pooling of the data, since no individual-level data are shared, which can lower hurdles for collaboration across multiple institutions and build stronger public trust.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.