Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Synthesizing Decentralized Controllers with Graph Neural Networks and Imitation Learning (2012.14906v4)

Published 29 Dec 2020 in cs.LG, cs.SY, eess.SP, and eess.SY

Abstract: Dynamical systems consisting of a set of autonomous agents face the challenge of having to accomplish a global task, relying only on local information. While centralized controllers are readily available, they face limitations in terms of scalability and implementation, as they do not respect the distributed information structure imposed by the network system of agents. Given the difficulties in finding optimal decentralized controllers, we propose a novel framework using graph neural networks (GNNs) to \emph{learn} these controllers. GNNs are well-suited for the task since they are naturally distributed architectures and exhibit good scalability and transferability properties. We show that GNNs learn appropriate decentralized controllers by means of imitation learning, leverage their permutation invariance properties to successfully scale to larger teams and transfer to unseen scenarios at deployment time. The problems of flocking and multi-agent path planning are explored to illustrate the potential of GNNs in learning decentralized controllers.

Citations (27)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.