Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Code Summarization with Structure-induced Transformer (2012.14710v2)

Published 29 Dec 2020 in cs.CL

Abstract: Code summarization (CS) is becoming a promising area in recent language understanding, which aims to generate sensible human language automatically for programming language in the format of source code, serving in the most convenience of programmer developing. It is well known that programming languages are highly structured. Thus previous works attempt to apply structure-based traversal (SBT) or non-sequential models like Tree-LSTM and graph neural network (GNN) to learn structural program semantics. However, it is surprising that incorporating SBT into advanced encoder like Transformer instead of LSTM has been shown no performance gain, which lets GNN become the only rest means modeling such necessary structural clue in source code. To release such inconvenience, we propose structure-induced Transformer, which encodes sequential code inputs with multi-view structural clues in terms of a newly-proposed structure-induced self-attention mechanism. Extensive experiments show that our proposed structure-induced Transformer helps achieve new state-of-the-art results on benchmarks.

Citations (79)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube