Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Advances in deep learning methods for pavement surface crack detection and identification with visible light visual images (2012.14704v2)

Published 29 Dec 2020 in cs.CV and eess.IV

Abstract: Compared to NDT and health monitoring method for cracks in engineering structures, surface crack detection or identification based on visible light images is non-contact, with the advantages of fast speed, low cost and high precision. Firstly, typical pavement (concrete also) crack public data sets were collected, and the characteristics of sample images as well as the random variable factors, including environmental, noise and interference etc., were summarized. Subsequently, the advantages and disadvantages of three main crack identification methods (i.e., hand-crafted feature engineering, machine learning, deep learning) were compared. Finally, from the aspects of model architecture, testing performance and predicting effectiveness, the development and progress of typical deep learning models, including self-built CNN, transfer learning(TL) and encoder-decoder(ED), which can be easily deployed on embedded platform, were reviewed. The benchmark test shows that: 1) It has been able to realize real-time pixel-level crack identification on embedded platform: the entire crack detection average time cost of an image sample is less than 100ms, either using the ED method (i.e., FPCNet) or the TL method based on InceptionV3. It can be reduced to less than 10ms with TL method based on MobileNet (a lightweight backbone base network). 2) In terms of accuracy, it can reach over 99.8% on CCIC which is easily identified by human eyes. On SDNET2018, some samples of which are difficult to be identified, FPCNet can reach 97.5%, while TL method is close to 96.1%. To the best of our knowledge, this paper for the first time comprehensively summarizes the pavement crack public data sets, and the performance and effectiveness of surface crack detection and identification deep learning methods for embedded platform, are reviewed and evaluated.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)