Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Comprehensive Guide to CAN IDS Data & Introduction of the ROAD Dataset (2012.14600v3)

Published 29 Dec 2020 in cs.CR and cs.LG

Abstract: Although ubiquitous in modern vehicles, Controller Area Networks (CANs) lack basic security properties and are easily exploitable. A rapidly growing field of CAN security research has emerged that seeks to detect intrusions on CANs. Producing vehicular CAN data with a variety of intrusions is out of reach for most researchers as it requires expensive assets and expertise. To assist researchers, we present the first comprehensive guide to the existing open CAN intrusion datasets, including a quality analysis of each dataset and an enumeration of each's benefits, drawbacks, and suggested use case. Current public CAN IDS datasets are limited to real fabrication (simple message injection) attacks and simulated attacks often in synthetic data, which lack fidelity. In general, the physical effects of attacks on the vehicle are not verified in the available datasets. Only one dataset provides signal-translated data but not a corresponding raw binary version. Overall, the available data pigeon-holes CAN IDS works into testing on limited, often inappropriate data (usually with attacks that are too easily detectable to truly test the method), and this lack data has stymied comparability and reproducibility of results. As our primary contribution, we present the ROAD (Real ORNL Automotive Dynamometer) CAN Intrusion Dataset, consisting of over 3.5 hours of one vehicle's CAN data. ROAD contains ambient data recorded during a diverse set of activities, and attacks of increasing stealth with multiple variants and instances of real fuzzing, fabrication, and unique advanced attacks, as well as simulated masquerade attacks. To facilitate benchmarking CAN IDS methods that require signal-translated inputs, we also provide the signal time series format for many of the CAN captures. Our contributions aim to facilitate appropriate benchmarking and needed comparability in the CAN IDS field.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.