Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature Selection (2012.14595v1)

Published 29 Dec 2020 in cs.LG and stat.ML

Abstract: In the field of data mining, how to deal with high-dimensional data is an inevitable problem. Unsupervised feature selection has attracted more and more attention because it does not rely on labels. The performance of spectral-based unsupervised methods depends on the quality of constructed similarity matrix, which is used to depict the intrinsic structure of data. However, real-world data contain a large number of noise samples and features, making the similarity matrix constructed by original data cannot be completely reliable. Worse still, the size of similarity matrix expands rapidly as the number of samples increases, making the computational cost increase significantly. Inspired by principal component analysis, we propose a simple and efficient unsupervised feature selection method, by combining reconstruction error with $l_{2,p}$-norm regularization. The projection matrix, which is used for feature selection, is learned by minimizing the reconstruction error under the sparse constraint. Then, we present an efficient optimization algorithm to solve the proposed unsupervised model, and analyse the convergence and computational complexity of the algorithm theoretically. Finally, extensive experiments on real-world data sets demonstrate the effectiveness of our proposed method.

Citations (37)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.