Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Cascaded Framework for Automatic Evaluation of Myocardial Infarction from Delayed-Enhancement Cardiac MRI (2012.14556v1)

Published 29 Dec 2020 in eess.IV and cs.CV

Abstract: Automatic evaluation of myocardium and pathology plays an important role in the quantitative analysis of patients suffering from myocardial infarction. In this paper, we present a cascaded convolutional neural network framework for myocardial infarction segmentation and classification in delayed-enhancement cardiac MRI. Specifically, we first use a 2D U-Net to segment the whole heart, including the left ventricle and the myocardium. Then, we crop the whole heart as a region of interest (ROI). Finally, a new 2D U-Net is used to segment the infraction and no-reflow areas in the whole heart ROI. The segmentation method can be applied to the classification task where the segmentation results with the infraction or no-reflow areas are classified as pathological cases. Our method took second place in the MICCAI 2020 EMIDEC segmentation task with Dice scores of 86.28%, 62.24%, and 77.76% for myocardium, infraction, and no-reflow areas, respectively, and first place in the classification task with an accuracy of 92%.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)