Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Cascaded Convolutional Neural Network for Automatic Myocardial Infarction Segmentation from Delayed-Enhancement Cardiac MRI (2012.14128v1)

Published 28 Dec 2020 in eess.IV and cs.CV

Abstract: Automatic segmentation of myocardial contours and relevant areas like infraction and no-reflow is an important step for the quantitative evaluation of myocardial infarction. In this work, we propose a cascaded convolutional neural network for automatic myocardial infarction segmentation from delayed-enhancement cardiac MRI. We first use a 2D U-Net to focus on the intra-slice information to perform a preliminary segmentation. After that, we use a 3D U-Net to utilize the volumetric spatial information for a subtle segmentation. Our method is evaluated on the MICCAI 2020 EMIDEC challenge dataset and achieves average Dice score of 0.8786, 0.7124 and 0.7851 for myocardium, infarction and no-reflow respectively, outperforms all the other teams of the segmentation contest.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)