Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Learning algorithms from circuit lower bounds (2012.14095v1)

Published 28 Dec 2020 in cs.CC, cs.CR, cs.LG, and cs.LO

Abstract: We revisit known constructions of efficient learning algorithms from various notions of constructive circuit lower bounds such as distinguishers breaking pseudorandom generators or efficient witnessing algorithms which find errors of small circuits attempting to compute hard functions. As our main result we prove that if it is possible to find efficiently, in a particular interactive way, errors of many p-size circuits attempting to solve hard problems, then p-size circuits can be PAC learned over the uniform distribution with membership queries by circuits of subexponential size. The opposite implication holds as well. This provides a new characterisation of learning algorithms and extends the natural proofs barrier of Razborov and Rudich. The proof is based on a method of exploiting Nisan-Wigderson generators introduced by Kraj\'{i}\v{c}ek (2010) and used to analyze complexity of circuit lower bounds in bounded arithmetic. An interesting consequence of known constructions of learning algorithms from circuit lower bounds is a learning speedup of Oliveira and Santhanam (2016). We present an alternative proof of this phenomenon and discuss its potential to advance the program of hardness magnification.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)