Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Person Re-identification with Adversarial Triplet Embedding (2012.14057v1)

Published 28 Dec 2020 in cs.CV

Abstract: Person re-identification is an important task and has widespread applications in video surveillance for public security. In the past few years, deep learning network with triplet loss has become popular for this problem. However, the triplet loss usually suffers from poor local optimal and relies heavily on the strategy of hard example mining. In this paper, we propose to address this problem with a new deep metric learning method called Adversarial Triplet Embedding (ATE), in which we simultaneously generate adversarial triplets and discriminative feature embedding in an unified framework. In particular, adversarial triplets are generated by introducing adversarial perturbations into the training process. This adversarial game is converted into a minimax problem so as to have an optimal solution from the theoretical view. Extensive experiments on several benchmark datasets demonstrate the effectiveness of the approach against the state-of-the-art literature.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.