Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Building Multi lingual TTS using Cross Lingual Voice Conversion (2012.14039v1)

Published 28 Dec 2020 in eess.AS and cs.SD

Abstract: In this paper we propose a new cross-lingual Voice Conversion (VC) approach which can generate all speech parameters (MCEP, LF0, BAP) from one DNN model using PPGs (Phonetic PosteriorGrams) extracted from inputted speech using several ASR acoustic models. Using the proposed VC method, we tried three different approaches to build a multilingual TTS system without recording a multilingual speech corpus. A listening test was carried out to evaluate both speech quality (naturalness) and voice similarity between converted speech and target speech. The results show that Approach 1 achieved the highest level of naturalness (3.28 MOS on a 5-point scale) and similarity (2.77 MOS).

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.