Papers
Topics
Authors
Recent
2000 character limit reached

Learning Light-Weight Translation Models from Deep Transformer (2012.13866v1)

Published 27 Dec 2020 in cs.CL

Abstract: Recently, deep models have shown tremendous improvements in neural machine translation (NMT). However, systems of this kind are computationally expensive and memory intensive. In this paper, we take a natural step towards learning strong but light-weight NMT systems. We proposed a novel group-permutation based knowledge distillation approach to compressing the deep Transformer model into a shallow model. The experimental results on several benchmarks validate the effectiveness of our method. Our compressed model is 8X shallower than the deep model, with almost no loss in BLEU. To further enhance the teacher model, we present a Skipping Sub-Layer method to randomly omit sub-layers to introduce perturbation into training, which achieves a BLEU score of 30.63 on English-German newstest2014. The code is publicly available at https://github.com/libeineu/GPKD.

Citations (38)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.