Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Approximation of Functions on Manifolds in High Dimension from Noisy Scattered Data (2012.13804v1)

Published 26 Dec 2020 in math.NA and cs.NA

Abstract: In this paper, we consider the fundamental problem of approximation of functions on a low-dimensional manifold embedded in a high-dimensional space, with noise affecting both in the data and values of the functions. Due to the curse of dimensionality, as well as to the presence of noise, the classical approximation methods applicable in low dimensions are less effective in the high-dimensional case. We propose a new approximation method that leverages the advantages of the Manifold Locally Optimal Projection (MLOP) method (introduced by Faigenbaum-Golovin and Levin in 2020) and the strengths of the method of Radial Basis Functions (RBF). The method is parametrization free, requires no knowledge regarding the manifold's intrinsic dimension, can handle noise and outliers in both the function values and in the location of the data, and is applied directly in the high dimensions. We show that the complexity of the method is linear in the dimension of the manifold and squared-logarithmic in the dimension of the codomain of the function. Subsequently, we demonstrate the effectiveness of our approach by considering different manifold topologies and show the robustness of the method to various noise levels.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.