Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Efficient computation of the oriented chromatic number of recursively defined digraphs (2012.13764v2)

Published 26 Dec 2020 in math.CO and cs.DS

Abstract: In this paper we consider colorings of oriented graphs, i.e. digraphs without cycles of length 2. Given some oriented graph $G=(V,E)$, an oriented $r$-coloring for $G$ is a partition of the vertex set $V$ into $r$ independent sets, such that all the arcs between two of these sets have the same direction. The oriented chromatic number of $G$ is the smallest integer $r$ such that $G$ permits an oriented $r$-coloring. In this paper we consider the Oriented Chromatic Number problem on classes of recursively defined oriented graphs. Oriented co-graphs (short for oriented complement reducible graphs) can be recursively defined defined from the single vertex graph by applying the disjoint union and order composition. This recursive structure allows to compute an optimal oriented coloring and the oriented chromatic number in linear time. We generalize this result using the concept of perfect orderable graphs. Therefore, we show that for acyclic transitive digraphs every greedy coloring along a topological ordering leads to an optimal oriented coloring. Msp-digraphs (short for minimal series-parallel digraphs) can be defined from the single vertex graph by applying the parallel composition and series composition. We prove an upper bound of $7$ for the oriented chromatic number for msp-digraphs and we give an example to show that this is bound best possible. We apply this bound and the recursive structure of msp-digraphs to obtain a linear time solution for computing the oriented chromatic number of msp-digraphs. In order to generalize the results on computing the oriented chromatic number of special graph classes, we consider the parameterized complexity of the Oriented Chromatic Number problem by so-called structural parameters, which are measuring the difficulty of decomposing a graph into a special tree-structure

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.