POPO: Pessimistic Offline Policy Optimization (2012.13682v2)
Abstract: Offline reinforcement learning (RL), also known as batch RL, aims to optimize policy from a large pre-recorded dataset without interaction with the environment. This setting offers the promise of utilizing diverse, pre-collected datasets to obtain policies without costly, risky, active exploration. However, commonly used off-policy algorithms based on Q-learning or actor-critic perform poorly when learning from a static dataset. In this work, we study why off-policy RL methods fail to learn in offline setting from the value function view, and we propose a novel offline RL algorithm that we call Pessimistic Offline Policy Optimization (POPO), which learns a pessimistic value function to get a strong policy. We find that POPO performs surprisingly well and scales to tasks with high-dimensional state and action space, comparing or outperforming several state-of-the-art offline RL algorithms on benchmark tasks.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.