Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Quantum Circuit Evolution on NISQ Devices (2012.13453v3)

Published 23 Dec 2020 in quant-ph, cs.LG, and stat.ML

Abstract: Variational quantum circuits build the foundation for various classes of quantum algorithms. In a nutshell, the weights of a parametrized quantum circuit are varied until the empirical sampling distribution of the circuit is sufficiently close to a desired outcome. Numerical first-order methods are applied frequently to fit the parameters of the circuit, but most of the time, the circuit itself, that is, the actual composition of gates, is fixed. Methods for optimizing the circuit design jointly with the weights have been proposed, but empirical results are rather scarce. Here, we consider a simple evolutionary strategy that addresses the trade-off between finding appropriate circuit architectures and parameter tuning. We evaluate our method both via simulation and on actual quantum hardware. Our benchmark problems include the transverse field Ising Hamiltonian and the Sherrington-Kirkpatrick spin model. Despite the shortcomings of current noisy intermediate-scale quantum hardware, we find only a minor slowdown on actual quantum machines compared to simulations. Moreover, we investigate which mutation operations most significantly contribute to the optimization. The results provide intuition on how randomized search heuristics behave on actual quantum hardware and lay out a path for further refinement of evolutionary quantum gate circuits.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube