Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Real-Time Facial Expression Emoji Masking with Convolutional Neural Networks and Homography (2012.13447v1)

Published 24 Dec 2020 in cs.CV

Abstract: Neural network based algorithms has shown success in many applications. In image processing, Convolutional Neural Networks (CNN) can be trained to categorize facial expressions of images of human faces. In this work, we create a system that masks a student's face with a emoji of the respective emotion. Our system consists of three building blocks: face detection using Histogram of Gradients (HoG) and Support Vector Machine (SVM), facial expression categorization using CNN trained on FER2013 dataset, and finally masking the respective emoji back onto the student's face via homography estimation. (Demo: https://youtu.be/GCjtXw1y8Pw) Our results show that this pipeline is deploy-able in real-time, and is usable in educational settings.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.