Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Regret bound for Non-stationary Multi-Armed Bandits with Fairness Constraints (2012.13380v1)

Published 24 Dec 2020 in cs.LG and cs.AI

Abstract: The multi-armed bandits' framework is the most common platform to study strategies for sequential decision-making problems. Recently, the notion of fairness has attracted a lot of attention in the machine learning community. One can impose the fairness condition that at any given point of time, even during the learning phase, a poorly performing candidate should not be preferred over a better candidate. This fairness constraint is known to be one of the most stringent and has been studied in the stochastic multi-armed bandits' framework in a stationary setting for which regret bounds have been established. The main aim of this paper is to study this problem in a non-stationary setting. We present a new algorithm called Fair Upper Confidence Bound with Exploration Fair-UCBe algorithm for solving a slowly varying stochastic $k$-armed bandit problem. With this we present two results: (i) Fair-UCBe indeed satisfies the above mentioned fairness condition, and (ii) it achieves a regret bound of $O\left(k{\frac{3}{2}} T{1 - \frac{\alpha}{2}} \sqrt{\log T}\right)$, for some suitable $\alpha \in (0, 1)$, where $T$ is the time horizon. This is the first fair algorithm with a sublinear regret bound applicable to non-stationary bandits to the best of our knowledge. We show that the performance of our algorithm in the non-stationary case approaches that of its stationary counterpart as the variation in the environment tends to zero.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.