Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

A Tight Lower Bound for Uniformly Stable Algorithms (2012.13326v2)

Published 24 Dec 2020 in cs.LG, cs.AI, and stat.ML

Abstract: Leveraging algorithmic stability to derive sharp generalization bounds is a classic and powerful approach in learning theory. Since Vapnik and Chervonenkis [1974] first formalized the idea for analyzing SVMs, it has been utilized to study many fundamental learning algorithms (e.g., $k$-nearest neighbors [Rogers and Wagner, 1978], stochastic gradient method [Hardt et al., 2016], linear regression [Maurer, 2017], etc). In a recent line of great works by Feldman and Vondrak [2018, 2019] as well as Bousquet et al. [2020b], they prove a high probability generalization upper bound of order $\tilde{\mathcal{O}}(\gamma +\frac{L}{\sqrt{n}})$ for any uniformly $\gamma$-stable algorithm and $L$-bounded loss function. Although much progress was achieved in proving generalization upper bounds for stable algorithms, our knowledge of lower bounds is rather limited. In fact, there is no nontrivial lower bound known ever since the study of uniform stability [Bousquet and Elisseeff, 2002], to the best of our knowledge. In this paper we fill the gap by proving a tight generalization lower bound of order $\Omega(\gamma+\frac{L}{\sqrt{n}})$, which matches the best known upper bound up to logarithmic factors

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)