Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Leave Zero Out: Towards a No-Cross-Validation Approach for Model Selection (2012.13309v2)

Published 24 Dec 2020 in cs.LG

Abstract: As the main workhorse for model selection, Cross Validation (CV) has achieved an empirical success due to its simplicity and intuitiveness. However, despite its ubiquitous role, CV often falls into the following notorious dilemmas. On the one hand, for small data cases, CV suffers a conservatively biased estimation, since some part of the limited data has to hold out for validation. On the other hand, for large data cases, CV tends to be extremely cumbersome, e.g., intolerant time-consuming, due to the repeated training procedures. Naturally, a straightforward ambition for CV is to validate the models with far less computational cost, while making full use of the entire given data-set for training. Thus, instead of holding out the given data, a cheap and theoretically guaranteed auxiliary/augmented validation is derived strategically in this paper. Such an embarrassingly simple strategy only needs to train models on the entire given data-set once, making the model-selection considerably efficient. In addition, the proposed validation approach is suitable for a wide range of learning settings due to the independence of both augmentation and out-of-sample estimation on learning process. In the end, we demonstrate the accuracy and computational benefits of our proposed method by extensive evaluation on multiple data-sets, models and tasks.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.