Papers
Topics
Authors
Recent
2000 character limit reached

Improving the Certified Robustness of Neural Networks via Consistency Regularization (2012.13103v2)

Published 24 Dec 2020 in cs.LG and cs.CV

Abstract: A range of defense methods have been proposed to improve the robustness of neural networks on adversarial examples, among which provable defense methods have been demonstrated to be effective to train neural networks that are certifiably robust to the attacker. However, most of these provable defense methods treat all examples equally during training process, which ignore the inconsistent constraint of certified robustness between correctly classified (natural) and misclassified examples. In this paper, we explore this inconsistency caused by misclassified examples and add a novel consistency regularization term to make better use of the misclassified examples. Specifically, we identified that the certified robustness of network can be significantly improved if the constraint of certified robustness on misclassified examples and correctly classified examples is consistent. Motivated by this discovery, we design a new defense regularization term called Misclassification Aware Adversarial Regularization (MAAR), which constrains the output probability distributions of all examples in the certified region of the misclassified example. Experimental results show that our proposed MAAR achieves the best certified robustness and comparable accuracy on CIFAR-10 and MNIST datasets in comparison with several state-of-the-art methods.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.