Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

THUIR@COLIEE-2020: Leveraging Semantic Understanding and Exact Matching for Legal Case Retrieval and Entailment (2012.13102v1)

Published 24 Dec 2020 in cs.IR and cs.AI

Abstract: In this paper, we present our methodologies for tackling the challenges of legal case retrieval and entailment in the Competition on Legal Information Extraction / Entailment 2020 (COLIEE-2020). We participated in the two case law tasks, i.e., the legal case retrieval task and the legal case entailment task. Task 1 (the retrieval task) aims to automatically identify supporting cases from the case law corpus given a new case, and Task 2 (the entailment task) to identify specific paragraphs that entail the decision of a new case in a relevant case. In both tasks, we employed the neural models for semantic understanding and the traditional retrieval models for exact matching. As a result, our team (TLIR) ranked 2nd among all of the teams in Task 1 and 3rd among teams in Task 2. Experimental results suggest that combing models of semantic understanding and exact matching benefits the legal case retrieval task while the legal case entailment task relies more on semantic understanding.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.