Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Analysis and Design of Partially Information- and Partially Parity-Coupled Turbo Codes (2012.13082v1)

Published 24 Dec 2020 in cs.IT, eess.SP, and math.IT

Abstract: In this paper, we study a class of spatially coupled turbo codes, namely partially information- and partially parity-coupled turbo codes. This class of codes enjoy several advantages such as flexible code rate adjustment by varying the coupling ratio and the encoding and decoding architectures of the underlying component codes can remain unchanged. For this work, we first provide the construction methods for partially coupled turbo codes with coupling memory $m$ and study the corresponding graph models. We then derive the density evolution equations for the corresponding ensembles on the binary erasure channel to precisely compute their iterative decoding thresholds. Rate-compatible designs and their decoding thresholds are also provided, where the coupling and puncturing ratios are jointly optimized to achieve the largest decoding threshold for a given target code rate. Our results show that for a wide range of code rates, the proposed codes attain close-to-capacity performance and the decoding performance improves with increasing the coupling memory. In particular, the proposed partially parity-coupled turbo codes have thresholds within 0.0002 of the BEC capacity for rates ranging from $1/3$ to $9/10$, yielding an attractive way for constructing rate-compatible capacity-approaching channel codes.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube