Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Using vis-NIRS and Machine Learning methods to diagnose sugarcane soil chemical properties (2012.12995v3)

Published 23 Dec 2020 in cs.LG

Abstract: Knowing chemical soil properties might be determinant in crop management and total yield production. Traditional soil properties estimation approaches are time-consuming and require complex lab setups, refraining farmers from promptly taking steps towards optimal practices in their crops. Soil properties estimation from its spectral signals, vis-NIRS, emerged as a low-cost, non-invasive, and non-destructive alternative. Current approaches use mathematical and statistical techniques, avoiding machine learning frameworks. This proposal uses vis-NIRS in sugarcane soils and machine learning techniques such as three regression and six classification methods. The scope is to assess performance in predicting and inferring categories of common soil properties (pH, soil organic matter OM, Ca, Na, K, and Mg), evaluated by the most common metrics. We use regression to estimate properties and classification to assess soil property status. In both cases, we achieved comparable performance on similar setups reported in the literature for property estimation for pH($R2$=0.8, $\rho$=0.89), OM($R2$=0.37, $\rho$=0.63), Ca($R2$=0.54, $\rho$=0.74), Mg($R2$=0.44, $\rho$=0.66) in the validation set.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.