Learning by Self-Explanation, with Application to Neural Architecture Search (2012.12899v2)
Abstract: Learning by self-explanation is an effective learning technique in human learning, where students explain a learned topic to themselves for deepening their understanding of this topic. It is interesting to investigate whether this explanation-driven learning methodology broadly used by humans is helpful for improving machine learning as well. Based on this inspiration, we propose a novel machine learning method called learning by self-explanation (LeaSE). In our approach, an explainer model improves its learning ability by trying to clearly explain to an audience model regarding how a prediction outcome is made. LeaSE is formulated as a four-level optimization problem involving a sequence of four learning stages which are conducted end-to-end in a unified framework: 1) explainer learns; 2) explainer explains; 3) audience learns; 4) explainer re-learns based on the performance of the audience. We develop an efficient algorithm to solve the LeaSE problem. We apply LeaSE for neural architecture search on CIFAR-100, CIFAR-10, and ImageNet. Experimental results strongly demonstrate the effectiveness of our method.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.