Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

The Complexity of Translationally Invariant Problems beyond Ground State Energies (2012.12717v1)

Published 23 Dec 2020 in quant-ph, cond-mat.str-el, cs.CC, math-ph, and math.MP

Abstract: It is known that three fundamental questions regarding local Hamiltonians -- approximating the ground state energy (the Local Hamiltonian problem), simulating local measurements on the ground space (APX-SIM), and deciding if the low energy space has an energy barrier (GSCON) -- are $\mathsf{QMA}$-hard, $\mathsf{P}{\mathsf{QMA}[log]}$-hard and $\mathsf{QCMA}$-hard, respectively, meaning they are likely intractable even on a quantum computer. Yet while hardness for the Local Hamiltonian problem is known to hold even for translationally-invariant systems, it is not yet known whether APX-SIM and GSCON remain hard in such "simple" systems. In this work, we show that the translationally invariant versions of both APX-SIM and GSCON remain intractable, namely are $\mathsf{P}{\mathsf{QMA}_{\mathsf{EXP}}}$- and $\mathsf{QCMA}_{\mathsf{EXP}}$-complete, respectively. Each of these results is attained by giving a respective generic "lifting theorem" for producing hardness results. For APX-SIM, for example, we give a framework for "lifting" any abstract local circuit-to-Hamiltonian mapping $H$ (satisfying mild assumptions) to hardness of APX-SIM on the family of Hamiltonians produced by $H$, while preserving the structural and geometric properties of $H$ (e.g. translation invariance, geometry, locality, etc). Each result also leverages counterintuitive properties of our constructions: for APX-SIM, we "compress" the answers to polynomially many parallel queries to a QMA oracle into a single qubit. For GSCON, we give a hardness construction robust against highly non-local unitaries, i.e. even if the adversary acts on all but one qudit in the system in each step.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.