Papers
Topics
Authors
Recent
2000 character limit reached

Blur More To Deblur Better: Multi-Blur2Deblur For Efficient Video Deblurring (2012.12507v1)

Published 23 Dec 2020 in cs.CV

Abstract: One of the key components for video deblurring is how to exploit neighboring frames. Recent state-of-the-art methods either used aligned adjacent frames to the center frame or propagated the information on past frames to the current frame recurrently. Here we propose multi-blur-to-deblur (MB2D), a novel concept to exploit neighboring frames for efficient video deblurring. Firstly, inspired by unsharp masking, we argue that using more blurred images with long exposures as additional inputs significantly improves performance. Secondly, we propose multi-blurring recurrent neural network (MBRNN) that can synthesize more blurred images from neighboring frames, yielding substantially improved performance with existing video deblurring methods. Lastly, we propose multi-scale deblurring with connecting recurrent feature map from MBRNN (MSDR) to achieve state-of-the-art performance on the popular GoPro and Su datasets in fast and memory efficient ways.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.