Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learned Indexes for a Google-scale Disk-based Database (2012.12501v1)

Published 23 Dec 2020 in cs.DB, cs.DC, and cs.LG

Abstract: There is great excitement about learned index structures, but understandable skepticism about the practicality of a new method uprooting decades of research on B-Trees. In this paper, we work to remove some of that uncertainty by demonstrating how a learned index can be integrated in a distributed, disk-based database system: Google's Bigtable. We detail several design decisions we made to integrate learned indexes in Bigtable. Our results show that integrating learned index significantly improves the end-to-end read latency and throughput for Bigtable.

Citations (36)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: