Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Probabilistic Outlier Detection and Generation (2012.12394v1)

Published 22 Dec 2020 in cs.LG

Abstract: A new method for outlier detection and generation is introduced by lifting data into the space of probability distributions which are not analytically expressible, but from which samples can be drawn using a neural generator. Given a mixture of unknown latent inlier and outlier distributions, a Wasserstein double autoencoder is used to both detect and generate inliers and outliers. The proposed method, named WALDO (Wasserstein Autoencoder for Learning the Distribution of Outliers), is evaluated on classical data sets including MNIST, CIFAR10 and KDD99 for detection accuracy and robustness. We give an example of outlier detection on a real retail sales data set and an example of outlier generation for simulating intrusion attacks. However we foresee many application scenarios where WALDO can be used. To the best of our knowledge this is the first work that studies both outlier detection and generation together.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Stefano Giovanni Rizzo (3 papers)
  2. Linsey Pang (9 papers)
  3. Yixian Chen (12 papers)
  4. Sanjay Chawla (61 papers)

Summary

We haven't generated a summary for this paper yet.