Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

A machine learning solver for high-dimensional integrals: Solving Kolmogorov PDEs by stochastic weighted minimization and stochastic gradient descent through a high-order weak approximation scheme of SDEs with Malliavin weights (2012.12346v6)

Published 22 Dec 2020 in math.NA, cs.NA, and q-fin.CP

Abstract: The paper introduces a very simple and fast computation method for high-dimensional integrals to solve high-dimensional Kolmogorov partial differential equations (PDEs). The new machine learning-based method is obtained by solving a stochastic weighted minimization with stochastic gradient descent which is inspired by a high-order weak approximation scheme for stochastic differential equations (SDEs) with Malliavin weights. Then solutions to high-dimensional Kolmogorov PDEs or expectations of functionals of solutions to high-dimensional SDEs are accurately approximated without suffering from the curse of dimensionality. Numerical examples for PDEs and SDEs up to 100 dimensions are shown by using second and third-order discretization schemes in order to demonstrate the effectiveness of our method.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.