Papers
Topics
Authors
Recent
2000 character limit reached

Approximation of functions with small mixed smoothness in the uniform norm (2012.11983v2)

Published 22 Dec 2020 in math.FA, cs.NA, and math.NA

Abstract: In this paper we present results on asymptotic characteristics of multivariate function classes in the uniform norm. Our main interest is the approximation of functions with mixed smoothness parameter not larger than $1/2$. Our focus will be on the behavior of the best $m$-term trigonometric approximation as well as the decay of Kolmogorov and entropy numbers in the uniform norm. It turns out that these quantities share a few fundamental abstract properties like their behavior under real interpolation, such that they can be treated simultaneously. We start with proving estimates on finite rank convolution operators with range in a step hyperbolic cross. These results imply bounds for the corresponding function space embeddings by a well-known decomposition technique. The decay of Kolmogorov numbers have direct implications for the problem of sampling recovery in $L_2$ in situations where recent results in the literature are not applicable since the corresponding approximation numbers are not square summable.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.