Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 411 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Contraband Materials Detection Within Volumetric 3D Computed Tomography Baggage Security Screening Imagery (2012.11753v1)

Published 21 Dec 2020 in cs.CV, cs.LG, and eess.IV

Abstract: Automatic prohibited object detection within 2D/3D X-ray Computed Tomography (CT) has been studied in literature to enhance the aviation security screening at checkpoints. Deep Convolutional Neural Networks (CNN) have demonstrated superior performance in 2D X-ray imagery. However, there exists very limited proof of how deep neural networks perform in materials detection within volumetric 3D CT baggage screening imagery. We attempt to close this gap by applying Deep Neural Networks in 3D contraband substance detection based on their material signatures. Specifically, we formulate it as a 3D semantic segmentation problem to identify material types for all voxels based on which contraband materials can be detected. To this end, we firstly investigate 3D CNN based semantic segmentation algorithms such as 3D U-Net and its variants. In contrast to the original dense representation form of volumetric 3D CT data, we propose to convert the CT volumes into sparse point clouds which allows the use of point cloud processing approaches such as PointNet++ towards more efficient processing. Experimental results on a publicly available dataset (NEU ATR) demonstrate the effectiveness of both 3D U-Net and PointNet++ in materials detection in 3D CT imagery for baggage security screening.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.