Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Knowledge Transfer Based Fine-grained Visual Classification (2012.11389v1)

Published 21 Dec 2020 in cs.CV

Abstract: Fine-grained visual classification (FGVC) aims to distinguish the sub-classes of the same category and its essential solution is to mine the subtle and discriminative regions. Convolution neural networks (CNNs), which employ the cross entropy loss (CE-loss) as the loss function, show poor performance since the model can only learn the most discriminative part and ignore other meaningful regions. Some existing works try to solve this problem by mining more discriminative regions by some detection techniques or attention mechanisms. However, most of them will meet the background noise problem when trying to find more discriminative regions. In this paper, we address it in a knowledge transfer learning manner. Multiple models are trained one by one, and all previously trained models are regarded as teacher models to supervise the training of the current one. Specifically, a orthogonal loss (OR-loss) is proposed to encourage the network to find diverse and meaningful regions. In addition, the first model is trained with only CE-Loss. Finally, all models' outputs with complementary knowledge are combined together for the final prediction result. We demonstrate the superiority of the proposed method and obtain state-of-the-art (SOTA) performances on three popular FGVC datasets.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.