Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 178 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Deep Feature Space Trojan Attack of Neural Networks by Controlled Detoxification (2012.11212v2)

Published 21 Dec 2020 in cs.LG and cs.CV

Abstract: Trojan (backdoor) attack is a form of adversarial attack on deep neural networks where the attacker provides victims with a model trained/retrained on malicious data. The backdoor can be activated when a normal input is stamped with a certain pattern called trigger, causing misclassification. Many existing trojan attacks have their triggers being input space patches/objects (e.g., a polygon with solid color) or simple input transformations such as Instagram filters. These simple triggers are susceptible to recent backdoor detection algorithms. We propose a novel deep feature space trojan attack with five characteristics: effectiveness, stealthiness, controllability, robustness and reliance on deep features. We conduct extensive experiments on 9 image classifiers on various datasets including ImageNet to demonstrate these properties and show that our attack can evade state-of-the-art defense.

Citations (143)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.