Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Multi-View Dynamic Fusion Framework: How to Improve the Multimodal Brain Tumor Segmentation from Multi-Views? (2012.11211v1)

Published 21 Dec 2020 in eess.IV and cs.CV

Abstract: When diagnosing the brain tumor, doctors usually make a diagnosis by observing multimodal brain images from the axial view, the coronal view and the sagittal view, respectively. And then they make a comprehensive decision to confirm the brain tumor based on the information obtained from multi-views. Inspired by this diagnosing process and in order to further utilize the 3D information hidden in the dataset, this paper proposes a multi-view dynamic fusion framework to improve the performance of brain tumor segmentation. The proposed framework consists of 1) a multi-view deep neural network architecture, which represents multi learning networks for segmenting the brain tumor from different views and each deep neural network corresponds to multi-modal brain images from one single view and 2) the dynamic decision fusion method, which is mainly used to fuse segmentation results from multi-views as an integrate one and two different fusion methods, the voting method and the weighted averaging method, have been adopted to evaluate the fusing process. Moreover, the multi-view fusion loss, which consists of the segmentation loss, the transition loss and the decision loss, is proposed to facilitate the training process of multi-view learning networks so as to keep the consistency of appearance and space, not only in the process of fusing segmentation results, but also in the process of training the learning network. \par By evaluating the proposed framework on BRATS 2015 and BRATS 2018, it can be found that the fusion results from multi-views achieve a better performance than the segmentation result from the single view and the effectiveness of proposed multi-view fusion loss has also been proved. Moreover, the proposed framework achieves a better segmentation performance and a higher efficiency compared to other counterpart methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.