Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Program State Abstraction for Feedback-Driven Fuzz Testing using Likely Invariants (2012.11182v1)

Published 21 Dec 2020 in cs.SE and cs.CR

Abstract: Fuzz testing proved its great effectiveness in finding software bugs in the latest years, however, there are still open challenges. Coverage-guided fuzzers suffer from the fact that covering a program point does not ensure the trigger of a fault. Other more sensitive techniques that in theory should cope with this problem, such as the coverage of the memory values, easily lead to path explosion. In this thesis, we propose a new feedback for Feedback-driven Fuzz testing that combines code coverage with the "shape" of the data. We learn likely invariants for each basic block in order to divide into regions the space described by the variables used in the block. The goal is to distinguish in the feedback when a block is executed with values that fall in different regions of the space. This better approximates the program state coverage and, on some targets, improves the ability of the fuzzer in finding faults. We developed a prototype using LLVM and AFL++ called InvsCov.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube