Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Who will accept my request? Predicting response of link initiation in two-way relation networks (2012.11172v1)

Published 21 Dec 2020 in cs.AI and cs.IR

Abstract: Popularity of social networks has rapidly increased over the past few years, and daily lives interrupt without their proper functioning. Social networking platform provide multiple interaction types between individuals, such as creating and joining groups, sending and receiving messages, sharing interests and creating friendship relationships. This paper addresses an important problem in social networks analysis and mining that is how to predict link initiation feedback in two-way networks. Relationships between two individuals in a two-way network include a link invitation from one of the individuals, which will be an established link if it is accepted by the invitee. We consider a sport gaming social networking platform and construct a multilayer social network between a number of users. The network formed by the link initiation process is on one of the layers, while the other two layers include a messaging relationships and interactions between the users. We propose a methodology to solve the link initiation feedback prediction problem in this multilayer fashion. The proposed method is based on features extracted from meta-paths, i.e. paths defined between different individuals from multiples layers in multilayer networks. We proposed a cluster-based approach to handle the sparsity issue in the dataset. Experimental results show that the proposed method can provide accurate prediction that outperforms state-of-the-art methods.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.