Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Energy Efficient Federated Learning over Heterogeneous Mobile Devices via Joint Design of Weight Quantization and Wireless Transmission (2012.11070v2)

Published 21 Dec 2020 in cs.NI and cs.LG

Abstract: Federated learning (FL) is a popular collaborative distributed machine learning paradigm across mobile devices. However, practical FL over resource constrained mobile devices confronts multiple challenges, e.g., the local on-device training and model updates in FL are power hungry and radio resource intensive for mobile devices. To address these challenges, in this paper, we attempt to take FL into the design of future wireless networks and develop a novel joint design of wireless transmission and weight quantization for energy efficient FL over mobile devices. Specifically, we develop flexible weight quantization schemes to facilitate on-device local training over heterogeneous mobile devices. Based on the observation that the energy consumption of local computing is comparable to that of model updates, we formulate the energy efficient FL problem into a mixed-integer programming problem where the quantization and spectrum resource allocation strategies are jointly determined for heterogeneous mobile devices to minimize the overall FL energy consumption (computation + transmissions) while guaranteeing model performance and training latency. Since the optimization variables of the problem are strongly coupled, an efficient iterative algorithm is proposed, where the bandwidth allocation and weight quantization levels are derived. Extensive simulations are conducted to verify the effectiveness of the proposed scheme.

Citations (31)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.