Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

MA-Unet: An improved version of Unet based on multi-scale and attention mechanism for medical image segmentation (2012.10952v1)

Published 20 Dec 2020 in eess.IV and cs.CV

Abstract: Although convolutional neural networks (CNNs) are promoting the development of medical image semantic segmentation, the standard model still has some shortcomings. First, the feature mapping from the encoder and decoder sub-networks in the skip connection operation has a large semantic difference. Second, the remote feature dependence is not effectively modeled. Third, the global context information of different scales is ignored. In this paper, we try to eliminate semantic ambiguity in skip connection operations by adding attention gates (AGs), and use attention mechanisms to combine local features with their corresponding global dependencies, explicitly model the dependencies between channels and use multi-scale predictive fusion to utilize global information at different scales. Compared with other state-of-the-art segmentation networks, our model obtains better segmentation performance while introducing fewer parameters.

Citations (53)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)